En savoir plus

Notre utilisation de cookies

« Cookies » désigne un ensemble d’informations déposées dans le terminal de l’utilisateur lorsque celui-ci navigue sur un site web. Il s’agit d’un fichier contenant notamment un identifiant sous forme de numéro, le nom du serveur qui l’a déposé et éventuellement une date d’expiration. Grâce aux cookies, des informations sur votre visite, notamment votre langue de prédilection et d'autres paramètres, sont enregistrées sur le site web. Cela peut faciliter votre visite suivante sur ce site et renforcer l'utilité de ce dernier pour vous.

Afin d’améliorer votre expérience, nous utilisons des cookies pour conserver certaines informations de connexion et fournir une navigation sûre, collecter des statistiques en vue d’optimiser les fonctionnalités du site. Afin de voir précisément tous les cookies que nous utilisons, nous vous invitons à télécharger « Ghostery », une extension gratuite pour navigateurs permettant de les détecter et, dans certains cas, de les bloquer.

Ghostery est disponible gratuitement à cette adresse : https://www.ghostery.com/fr/products/

Vous pouvez également consulter le site de la CNIL afin d’apprendre à paramétrer votre navigateur pour contrôler les dépôts de cookies sur votre terminal.

S’agissant des cookies publicitaires déposés par des tiers, vous pouvez également vous connecter au site http://www.youronlinechoices.com/fr/controler-ses-cookies/, proposé par les professionnels de la publicité digitale regroupés au sein de l’association européenne EDAA (European Digital Advertising Alliance). Vous pourrez ainsi refuser ou accepter les cookies utilisés par les adhérents de l'EDAA.

Il est par ailleurs possible de s’opposer à certains cookies tiers directement auprès des éditeurs :

Catégorie de cookie

Moyens de désactivation

Cookies analytiques et de performance

Realytics
Google Analytics
Spoteffects
Optimizely

Cookies de ciblage ou publicitaires

DoubleClick
Mediarithmics

Les différents types de cookies pouvant être utilisés sur nos sites internet sont les suivants :

Cookies obligatoires

Cookies fonctionnels

Cookies sociaux et publicitaires

Ces cookies sont nécessaires au bon fonctionnement du site, ils ne peuvent pas être désactivés. Ils nous sont utiles pour vous fournir une connexion sécuritaire et assurer la disponibilité a minima de notre site internet.

Ces cookies nous permettent d’analyser l’utilisation du site afin de pouvoir en mesurer et en améliorer la performance. Ils nous permettent par exemple de conserver vos informations de connexion et d’afficher de façon plus cohérente les différents modules de notre site.

Ces cookies sont utilisés par des agences de publicité (par exemple Google) et par des réseaux sociaux (par exemple LinkedIn et Facebook) et autorisent notamment le partage des pages sur les réseaux sociaux, la publication de commentaires, la diffusion (sur notre site ou non) de publicités adaptées à vos centres d’intérêt.

Sur nos CMS EZPublish, il s’agit des cookies sessions CAS et PHP et du cookie New Relic pour le monitoring (IP, délais de réponse).

Ces cookies sont supprimés à la fin de la session (déconnexion ou fermeture du navigateur)

Sur nos CMS EZPublish, il s’agit du cookie XiTi pour la mesure d’audience. La société AT Internet est notre sous-traitant et conserve les informations (IP, date et heure de connexion, durée de connexion, pages consultées) 6 mois.

Sur nos CMS EZPublish, il n’y a pas de cookie de ce type.

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de l’INRA par email à cil-dpo@inra.fr ou par courrier à :

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2018

Menu Logo Principal AgrocampusOuest Rennes 1

Institut de Génétique, Environnement et Protection des Plantes

Nitrogen metabolism under abiotic stress

In the near future, field-grown winter oilseed rape may be required to frequently withstand both restricted N availability due to the introduction of low N input crop management practices and limited water supply due to forecast climatic changes. Current oilseed rape breeding programmes are seeking better NUE genotypes adapted to limited N conditions but do not necessarily take into account the impact that such adaptations might have on the plant tolerance to other environmental constraints (drought, high or low temperatures, diseases,…). Nitrogen metabolism is by nature highly mobilized in the process of nutrient recycling between source and sink organs and seed filling. Nitrogen metabolism is also highly mobilized in response to abiotic stresses. The objective is to investigate how metabolic adjustments under stress can both participate to tolerance and interfere with the trophic processes and efficiency of nitrogen use in plants.

Research and main results

The functional value of metabolism known to be induced under stress conditions is sought. These include the metabolic pathways involved in mobilizing glutamate and directed to glutamine, proline and gamma-aminobutyric acid (Gaba) production and utilization. Proteases and protease inhibitors are also being studied as key effectors of nitrogen remobilization whose regulation by stress is investigated. Besides these targeted investigations more comprehensive metabolomic approaches are performed in oilseed rape under stress and in related species more or less adapted to adverse conditions with the prospect of discovering metabolic markers of tolerance.

1) Proteolysis regulation under stress

The effective recycling of the N compounds from source leaves to sink growing tissues requires a fine coordination between sink demand and the process of proteolysis. Involvement of protease inhibitors and proteases in the control of proteolysis during the remobilisation process is investigated by identification of proteases and protease inhibitors as potential regulators of natural or drought induced senescence. Thus, BnD22, a protease inhibitor, may have an important role in plant resistance to diverse forms of stress and may contribute to a better utilization of recycling N from sources, a physiological trait that improves N-use efficiency.

2) Stress induced glutamate-derived pathways

The regulation of glutamate (Glu) metabolism appears to be of considerable importance in the N economy of plants. Using aminoacid pool released via proteolysis, series of transamination reactions lead to an increase in Glu pool that could serve immediately as a substrate for Glutamine Synthetase 1 (GS1) and Glutamate dehydrogenase (GDH). Therefore gene coding GS1 enzymes are candidate genes studied for their potential involvement in N remobilisation during seed filling under both optimal and stress conditions. Gaba (g-aminobutyric acid), is also derived from Glu via the activity of Glu decarboxylase (GAD). This molecule is known to accumulate in response to a wide range of environmental stimuli. It has been recently shown that GABA may act as a putative long-distance signal molecule in up-regulation of nitrate uptake in B. napus. Moreover, GABA-transaminase (GABA-T), the first enzyme of the GABA catabolism, is up-regulated during leaf senescence and under osmotic stress conditions. We performed a functional analysis of the GABA-T gene in Arabidopsis thaliana and demonstrated that the previously isolated loss-of-function GABA-T mutant is affected in root development, salt stress tolerance and C/N ratio regulation.

Oversensitive phenotype of pop2-1 (Gaba transaminase) mutant in response to NaCl

Oversensitive phenotype of pop2-1 (Gaba transaminase) mutant in response to NaCl (from Renault et al., 2010)

Under osmotic stresses, Glu becomes a predominant precursor for proline accumulation as a compatible solute in oilseed rape via P5CS (Pyroline 5-carboxylate synthetase) and PDH (Proline dehydrogenase) activity regulations. Proline can be also considered as a storage compound since it becomes readily available during the post-stress period. PDH is under focus as a major contributor to proline metabolism regulation and nitrogen use efficiency under osmotic stress.

3) Functional metabolomic of stress tolerance

We consider both the studies of targeted biochemical families of functional importance (e.g. osmoprotectants, anti-oxidants, growth regulators,...) and the non-supervised metabolomic investigations dedicated to the characterization of novel metabolic attributes of drought and salt stress tolerance. A close attention is given to the exploration of metabolic fingerprinting reports done on oilseed rape grown under controlled conditions with combined nitrogen and drought stress or Arabidopsis and related species. Metabolic signatures of extremophile taxons recently proposed as model species for abiotic stress tolerance investigations (e.g. Thellungiella sp.; Arabis sp.) are researched.

Metabolic signatures of oilseed rape leaves submitted to both nitrogen and water stresses

Metabolic signatures of oilseed rape leaves submitted to both nitrogen and water stresses (Albert et al., in prep.)

oilseed rape leaves submitted to both nitrogen and water stresses

Main references

Lugan R., Niogret M.F., Kervazo L., Larher F.L., Kopka J., Bouchereau A., 2009 - Metabolome and water status phenotyping of Arabidopsis under abiotic stress cues reveals new insight into ESK1 function. Plant Cell Env., 32, 95–108.

Lugan R., Niogret MF., Leport L.,  Guégan JP.,  Larher F., Savouré A.,  Kopka J.,  Bouchereau, A., 2010 - Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. Plant J. 64, 215-229.

Renault H., Roussel V., El Amrani A., Arzel M., Renault D., Bouchereau A., Deleu C., 2010 – The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biology, 10, 1-16.

Renault H., El Amrani A., Palanivelu R., Updegraff EP., Yu A., Renou JP., Preuss D., Bouchereau A., Deleu C., 2011 – GABA accumulation causes cell elongation defects and a decrease in expression of genes encoding secreted and cell-wall-related proteins in Arabidopsis thaliana.

Plant Cell Physiol., 52(5), 894-908.Albert B., Le Cahérec F., Niogret M.F., Faes P., Avice J.C., Leport L., Bouchereau A. (2012) Nitrogen availability impacts oilseed rape (Brassica napus L.) plant water status and proline production efficiency under water-limited conditions. Planta, 236, 659-676.

Renault H., El Amrani A., Berger A., Mouille G., Soubigou-Taconnat L., Bouchereau A., Deleu C., 2013 - γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots. Plant Cell Environ. DOI

Collaborations

  • Unité "Physiologie Cellulaire et Moléculaire des Plantes" , UPMC, Paris, France
  • UMR950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S (EVA), INRA-UCBN, France.
  • IJPB,  INRA Versailles, France
  • IRSTEA, UR TERE, Rennes, France
  • UMR 5553, LECA, CNRS-UJF, Grenoble, France
  • Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
  • Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Germany