Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Agrocampus Ouest Rennes 1 University

Home page

Seed quality in B. napus

The increased production of rapeseed oil is a major goal and can go through the increase of seed yield and / or oil content in the seed. In addition, the competitiveness of the rapeseed crop will be achieved only if the energy cost of production (inputs, extraction process) is reduced and balanced by a high added value of the co-products.

Research and main results

Genetic and functional analyses of seed oil content

Oil seed content trait is under complex genetic determinism: 14 genomic regions were identified in the 'Darmor-bzh x Yudal' doubled haploid population (Delourme et al. 2006). Molecular markers were developed to refine the targeted regions based on candidate genes, the Brassica/Arabidopsis synteny and more recently the sequencing data from the Brassica genomes. In addition, an initial characterization of genetic diversity for the oil content has been initiated using a panel of around 100 rapeseed accessions and will help to bring results on the validation of targeted regions.

programme2

Impact of the composition and/or structure of the oil bodies on seed crushing ability

Better knowledge of the biogenesis and the accumulation of the oil bodies (OBs) would provide keys to modify their stability and therefore to facilitate the oil extraction process. To this purpose an exhaustive description of the protein composition from rapeseed OBs was achieved by combination of proteomic and genomic tools. Genomic analysis led to the identification of major proteins, including oleosins, steroleosins and caleosins. Alignments of amino acid sequences revealed a high level of conservation between Arabidopsis and Brassica napus. Future work will include the production and analysis of transgenic rapeseeds with modified expression of OB protein genes.

Biochemical and molecular analyses of flavonoid metabolism in rapeseed

The profiling of seed coat flavonoids by LC-ESI-MSn was established in 8 black-seeded B. napus genotypes, during seed development (Auger et al. 2010). Sixteen different flavonoids including (-)-epicatechin, procyanidins and flavonols were identified and quantified. High amounts of PCs accumulated in the seed coat, with solvent-soluble polymers of (-)-epicatechin reaching up to 10% of the seed coat weight during seed maturation. In addition, variability for both PC and flavonol contents was observed within the different genotypes. In parallel, a cadidate gene approach was initiated. The orthologs of seven Arabidopsis TRANSPARENT TESTA (TT) were cloned in B. napus. A comparative genomic study revealed (1) a high conservation in the amino acid sequences between the Brassicacea and (2) a syntenic location on the respective genomic sequences. Finally, the activation profile of the promotors Bna.BAN was monitored in planta with « promotor-reporter » fusions in rapeseed and in Arabidopsis (Auger et al., 2009; Nesi et al., 2009).

Left panel: Time course accumulation of procyanidins in rapeseed Right panel: Procyanidin content in black and yellow seeded rapeseed lines

Main references

Jolivet et al. Deciphering the structural organization of the oil bodies in the Brassica napus seed as a mean to improve the oil extraction yield. Industrial Crops and Products 44 (2013) 549-557. DOI

Jolivet et al. Oil body proteins sequentially accumulate throughout seed development in Brassica napus. J Plant Physiol. 2011 Nov 15;168(17):2015-20. DOI

Auger B. et al. A detailed survey of seed coat flavonoids in developing seeds of Brassica napus L. J Agric Food Chem. 2010 May 26;58(10):6246-56. DOI

Auger B. et al. Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed. Planta. 2009 Nov;230(6):1167-83. DOI

Nesi N. et al. The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidin-accumulating cells of the Brassica napus seed coat. Plant Cell Rep. 2009 Apr;28(4):601-17. DOI

Jolivet P. et al. Protein composition of oil bodies from mature Brassica napus seeds. Proteomics. 2009 Jun;9(12):3268-84. DOI 

Nesi N. et al. Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. C R Biol. 2008 Oct;331(10):763-71. DOI

Delourme R. et al. Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet. 2006 Nov;113(7):1331-45.

Lepiniec L. et al. Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol. 2006;57:405-30. Review

Collaborations

  • UMR1318 IJPB, INRA Versailles – AgroParisTech, France
  • UR117 Cidricoles, Biotransformation des Fruits et Légumes, INRA Rennes, France
  • UR1268 Biopolymères Interactions Assemblages, INRA Nantes, France
  • CNRGV Centre National de Ressources en Génomique Végétale, INRA Toulouse, France
  • UMR1165 Génomique Végétale, INRA Evry – CNRS, France
  • Plate-forme d'Histo-pathologie / IFR140, Univ. Rennes1, France
  • Biogemma, Mondonville et Clermont-Ferrand, France
  • CETIOM, Pessac, France
  • Univ. Bielefeld, Germany
  • Univ. Giessen, Germany

Fundings/Projects

  • OSRCROP (ANR Genoplante 2006-2008): « Carbon balance in seed filling of oilseed rape (Brassica napus) - Controlling reserve accumulation in oil and protein » (coordination J. Wilmer, Biogemma)
  • GENEBODIES (ANR Genoplante 2006-2008): « Structural and functional study of oil and protein storage bodies in A. thaliana and B. napus: towards environmental friendly oil and protein extraction process» (coordination T. Chardot, INRA Versailles)
  • GENERGY (ANR Genoplante 2008-2012): « Improvement of the oil yield of the rapeseed crop in the context of bio fuel production » (coordination N. Nesi, INRA Rennes)
  • RAPSODYN (Investissements d’Avenir 2012-2019): « Optimisation of the rapeseed oil content and yield under low nitrogen input : improving breeding of adapted varieties using genetics and genomics» (coordination N. Nesi, INRA Rennes)